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BIOSTATISTICS 
TOPIC 6: ANALYSIS OF DIFFERENCES  

I. TWO-GROUP COMPARISONS 
 
 
 

IN GOD WE TRUST; ALL OTHERS MUST USE DATA. 
 

  
 
I. INTRODUCTION 
 
 Before venturing into the central theme of this topic, let us have a few discussions 
of the nature of scientific research. Some people are proud and arrogant that they know so 
much. In fact, the less we know, the more certain we are in explanations; the more we 
know, the more we realise our limitations. Socrate used to say: "I know only one thing - 
that I do not know". It is not surprised that, John Maddox, the editor of Nature, recently 
remarked in Sydney that "life is still a mystery". I do not think this is a pessimistic 
comment, but rather a recognition of complexity of life.  
 
 From a mathematical point of view, the phenomenon world is nothing more than a 
set of relations. Everything is conditioned, relative and interdependent. One of the first 
great principles of population genetics is that the phenotype is the resultant of the 
individual's genotype and the environment in which that individual develops and lives its 
life. The phenotype can thus be altered by both change in the genotype and change in the 
environment.  
 
 Therefore, to understand or to explain the world phenomenon, we need to 
formulate hypotheses. For every phenomenon. we investigate, we must have at least one, 
numerically precise, statistical hypothesis. Sometimes, there are a number of alternative 
predictions we can make and each of these must be clearly distinguished before starting the 
research. This enables us to decide beforehand how we will choose between them when the 
results are obtained.  
 
 It is probably reasonable to say that the acme of scientific method is 
experimentation. From an abstract theory or concept, a prediction is drawn and an 
experiment is set up to discover whether this prediction is true (borne out) or not. If the 
prediction is in the way we expect, we have added some confirmation to the theory, but by 
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no means proved it to be true (you may consult some philosophical books to see my point 
- we will discuss this later). There are a number of explanations possible for any 
observation. Consequently, we can never be sure that the explanation with which we 
started out is that which must apply in the particular circumstances of one experiment. If 
we believe that an observation or some observations prove an abstract hypothesis to be 
true, we commit the fallacy of confirming a consequent in hypothetical argument. A good 
theory or hypothesis is one which generates a number of different predictions and it 
becomes ever more confirmed when each of these is verified. Even, when all are verified it 
may still be false, since some other explanations are still possible, because as discussed 
earlier, life is a set of interdependent relations. When a number of alternative explanations 
have been given for a class of events, we generally prefer that which has the wider domain 
of implication. If the domains are equal, we prefer the more elegant theory. This amounts 
to saying that scientific explanations are limited by our human capacity to produce them, 
but this is usually adequate for most of us.  
 
 Now, we will see how statistical laws can help us to make our scientific judgement. 
 
 
II. HYPOTHESIS TESTING 
 
 
 Once a sample is taken, it is usually characterised by one or more sample statistics. 
The purpose of hypothesis testing is to use these statistics and our knowledge of statistical 
distribution to make inferences about the population from which the sample is drawn.  
 
 A hypothesis, in this case, is a statistical statement that is to be rejected or not 
rejected. Hypothesis can be formulated about means, variances, differences of means, 
variances or medians etc.  
 
 There are two hypotheses in any statistical test. The first and most important is 
called H0  - the null hypothesis. The second is called alternative hypothesis and is denoted 
by H1. For example,  
 
 a test of two simple hypotheses is H0 0:µ =  and H1 0:µ ≠ ;  
 a test of one simple and one composite hypothesis is: H0 0:µ =  and H1 0:µ > . 
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 To accept H0 , the result of the statistical test must be some number which falls into 
the acceptance region. Any other value in the critical region, as shown in the following 
figure and required the rejection of H0 . For example, if the true mean of a normal 
distribution is µ = 100 and we hypothesise H0 100:µ =  or H1 100:µ ≠ , two values x1 and 
x2  must be determined to separate the acceptance and critical region.  
 

µ = 100x1 x2

acceptance region critical regioncritical region  
 

Figure 1: Acceptance and critical region of hypothesis testing. 
 
 
2.1. TYPE OF ERRORS AND THEIR PROBABILITIES 
 
 No statistical hypothesis is ever impossible, it is merely more or less improbable. 
We must decide before an experiment how improbable H0  should be for us to reject it. The 
selection of a rejection area for H0  is not dictated by the science of statistics, it is a matter 
of policy for the empirical scientist using statistical methods. If the probability that H0  is 
true is very small, we will reject it and put the faith in one of the alternatives. The rejection 
(or critical) area of the sampling distribution, under the null hypothesis H0 , is defined by a 
cut-off point which is symbolised by α. The conventional critical value for α are 0.05, 0.01 
or 0.001 (5%, 1% or 0.1%) significance level. Thus, if the probability of H0  being true is 
less than or equal to α, we reject it; otherwise, we accept it. Therefore, α is the probability 
of rejecting H0  , while it is true. This is also called type I error. 
 
 But, either H0  or H1 must be true in reality, we can also make another error of 
accept H0  while it is false. This is called type II error (β level). 
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 Decision 
 Reality   
   Reject H0   Accept H0   
   
 H0  is true Type I error (α) Correct 
 H0  is false Correct Type II error (β) 
   
 
 One may also represent this graphically as follows: 
 

x1 x2

Ho H1

α/2
α/2

β  
 Figure 2: Type I and type II errors. 

 
 
2.2. ONE-SIDED VERSUS TWO-SIDED HYPOTHESIS ? 
 
 If H1 involves a non-equal relation, for instance, H0 : µ = 0 versus H1:µ ≠  0 , no 
direction is specified, so the significance area is equally divided between the two tails of 
the testing distribution in a fashion similar to that of shown in Figure 2. This is called a 
two-sided or two-tailed test. If, however, it is known that the parameter can go in only one 
direction, i.e. H0 : µ = 0 versus H1:µ > 0  or H0 : µ = 0 versus H1:µ < 0, the statistic is an 
one-sided or one-tailed test.  
 
 But the world does not always work that way. One is tempted to gauge the p-value 
of the test to satisfy one's assumption, therefore, the issue of one-sided or two-sided test is 
a controversial one. You may care to read the following note from a leading British 
medical statistician about this issue. It must be noted that we do not have to take his 
opinion, because, as I said, the issue is arguable in both directions. 
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2.3. AN EXAMPLE 
 
 Let us now take a concrete example. Suppose that we have carried a research into 
bone loss and found the mean and standard deviation of rate of bone loss (% per year) in 
femoral neck in 5 subjects were: -1.20 g/cm2 and 0.8 g/cm2. The question is that "is it 
reasonable to say that the rate of bone loss was significantly different from zero (no loss) 
?".  In statistical language, this question could be translated as: 
 
  H0 : µ = 0  
 versus H1:µ ≠  0 (µ < 0 or µ> 0) 
 
 This is a two-sided hypothesis. Now, for n = 5, the standard error of the rate of 
change is: 
 
   SE = 0.8 / 5  = 0.36 
 
 Because the sample size is small, we can not use the normal distribution, but have 
to use the t distribution (see appendix), to work out the confidence interval of the observed 
rate of change. Now, if we are prepared to "commit" 1% level of type I error, for two-sided 
test, the confidence interval around the mean would be (1 - 0.01/2) = 0.995. As can be seen 
from the t distribution, the critical value of for t with 0.975 and (5-1) = 4 degrees of 
freedom is 4.604.  
 
 In the observed data we have: 
 
   t = (-1.2 - 0) / 0.36 = 3.33 
 
 which is less than the expected t distribution. We  conclude that the difference (-
1.2%) was not statistically significantly different from zero at 1% level. In other words, the 
observed percent change is within the 99.5% confidence interval around zero.  
 
 Is it statistically significantly different from zero at 5% level ? 
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III. GENERAL PRINCIPLE OF ANALYSIS OF DIFFERENCES BETWEEN 

TWO GROUPS 
 
3.1. In previous topics, we mentioned that for a normal random variable X with mean 

x and standard deviation s, we would expect that 95% of the values of X will lie 
between x -2s and x +2s. So, for any value, say xi  such that | x xi − | is greater than 2s 

(or absolute of 





 −

s
xxi  is greater than 2), we would conclude that xi  is significantly 

"abnormal". Abnormal should be understood as outside the expected range in a 
certain probability.  

 
 
3.2. (a) For a random variable X whose individual values x x1 2, ,. . . , xn   which were 

sampled from a population with mean µ x  and variance σ x
2 ,. The sample mean and 

variance of X are:  

     x  = 1
1n

xi
i

n

=
∑  

 and    sx
2  = ( )∑ −

− =

n

i
i xx

n 1

2

1
1  

 
 (b) Similarly, suppose that we have a random variable Y with individual values 

y y1 2, , . . . , ym  of sizes m sampled from a population with mean µ y  and variance σ y
2 . 

The sample mean and variance of Y are: 
 

     y  = 1
1m

yi
i

m

=
∑  

 and    sy
2  = ( )∑ −

− =

m

i
i yy

m 1

2

1
1  

 
 (c) Suppose that we want to test the hypothesis of  µ x  = µ y  against the alternative 

hypothesis of  µ x  ≠  µ y  (µ x  < µ y  or µ x  > µ y ). The hypotheses can be equivalently 
stated as (µ x  - µ y ) = 0 versus (µ x  - µ y ) ≠  0. The most obvious measure of difference 

is simply (x  - y ) (the sample mean difference). Although conceptually extremely 
simple, the mean difference has the disadvantage that its interpretation depends on 
the unit of measurement as well as on the variability within each group. For instance, 
we do not know whether a mean difference of 15 is "large" unless we relate this 
figure to the variability in some way. Therefore, we prefer the standard distance D 
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which is defined as the absolute value of the mean difference divided by the standard 

deviation of the difference such that D = ( )yxs
yx

−
−

. Similar to point 1, if (x  - y ) is 

more than twice the standard deviation of (x  - y ), we would conclude that  µ x  is 

significantly different to µ y . In other words, if ( )yxs
yx

−
−

>2, we would reject the null 

hypothesis. 
 
 So, the problem reduces to the finding an expected value and variance for the 

differences between sample means, x  and y  .  
 
 
3.3. It can be shown that, the expected value of  x  and y  are µ x  and µ y , respectively, 

which are simply the expected value of the random variables X and Y. That is: 
 
 for X, we have:  E(x ) = µ x  

 and    var(x ) = σ x

n

2

. 

 i.e.   SD(x ) = σ x

n
 

 and for Y, we have: E( y ) = µ y  

 and   var( y ) = 
σ y

m

2

 

 i.e.   SD( y ) = σ2

m
 

 
3.4. It can also be shown that the difference between X and Y are normally distributed, 

with expected value of: 
     E(x  - y ) = µ x  - µ y    [1] 

 
 and variance  var(x  - y ) = var(x ) + var( y ) 

            = σ x

n

2

  + 
σ y

m

2

  [2] 

 

 i.e   SD(x  - y ) = σ σx y

n m

2 2

+   [3] 
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  Remember that the standard deviation is measured in the same unit as the mean, 
hence D is dimensionless. It does not depend on the unit of measurement: it does not 
matter whether we measure in millimetre or in metre. It is therefore possible to 
compare standard distances irrespective of the scales used. as we mentioned in point 

2(c) i.e. D = ( )yxSD
yx
−

−
 

 
  The main issue here is the estimation of the standard deviation of (x  - y ). We will 

consider this in case-by-case basis as follows. 
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IV. DIFFERENCES BETWEEN MEANS: INDEPENDENT SAMPLES 
 
4.1. NORMALLY DISTRIBUTED DATA 
 
 In the same setting as the problem in section I. That is, we have a sample of n and m 

values xi   and yi  which were drawn from two populations with mean µ x  and µ y , and 
variances σ x

2  and σ y
2 , respectively. Suppose further that we have a sample means x  

and y  and variances sx
2  and sy

2 . To test the hypothesis of 

 
     Ho x y:µ µ=  

 
 against    Ha x y:µ µ≠  

 
 we will use the statistics in [1] and [3]. However, to simplify the issue further, we 

would like to assume that the population variances are equal, i.e. σ x
2  =σ y

2  = σ2, then 

[3] can be reduced to:  
 

    SD(x  - y ) = 





 +

mn
112σ  = 






 +

mn
11σ   [4] 

 
 The issue is now to estimate the average variance of the two samples, which is: 
 

    
( ) ( )

( ) ( )
( ) ( )

2
11

11
11 2222

2
−+

−+−
=

−+−

−+−
=

mn
smsn

mn
smsn

s yxyx   

 

 i.e  
( ) ( )

2
11 22

−+

−+−
=

mn
smsn

s yx     [5] 

 
 With s2  is as an unbiased estimate of σ2. Then [4] can be written as:: 
 

    SD(x  - y ) = 





 +

mn
s 11     [6] 

 
 Hence, the standard distance in [1] becomes: 
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    ( )yxSD
yxD
−

−
=  =  x y

s
n m

−

+
1 1

     [7] 

 which is distributed according to the t distribution with n+m-2 df. 
 
 Example 1: Stegman et al. (JBMR, August 1992) studied the association between 

ultrasound measurement of bone quality and fracture. Bone quality was measured by 
apparent velocity of ultrasound (AVU) in m/s. In 37 women with no fracture, mean 
AVU was 1850 m/s with standard deviation of 59 m/s. In 10 women with low trauma 
fracture, mean AVU was 1782 m/s and standard deviation of 89 m/s. The authors 
concluded "these initial results show that those with low trauma fractures have 
significantly lower AVU than those without". Verify this conclusion. 

 
 The difference in AVU between those fracture and non-fracture was 68 m/s. 

However, as mentioned earlier, we do not know whether this difference is substantial 
until the variability of the measurement is taken into account. Now, the estimate of 
common variance for the two groups of patients, by [5], is: 

 

   
( ) ( )

2
11 22

2
−+

−+−
=

mn
smsn

s yx  = ( ) ( )
21037
8995936 22

−+
+  = 4369 m2/s2 

 
 i.e  s  = 4369  = 66.1 m/s. 
 
 Then, the standard deviation of the difference between means, by [6],  is:  
 

  SD(diff) = 66× +
1

37

1

10
 = 23.5 m/s 

 
 Now, the absolute difference was 68 m/s, which is nearly three times (=68/23.5) the 

standard deviation of the difference, hence it seems that the conclusion is true. Let us 
check our finding in terms of probability.  

 
 We learnt from the previous topic that the for a moderate sample size such as in this 

study, it would probably be reasonable to assume that the statistics defined in [7] 
have the t distribution with 37+10-2 = 45 degrees of freedom, which gives an 
expected value of 1.99 at 5% significance level (see Table of t distribution). 
However, the observed distance is 68/23.5 = 2.89 which is much higher than the 
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expected value. We conclude that the observed difference is beyond expected by 
chance alone, if the null hypothesis is true. We call this "statistically significant" 
difference.  // 

 
 
4.2. CONFIDENCE INTERVAL 
 
 The results of the t-test above are only part of the analysis, since it gives no 

indication of the size of any possible treatment effect.  To do this, we have to present 
an estimate of the treatment effect, together with some measure of precision. 
Commonly, this is done by presenting treatment means with one of the following: 

 
 (a) Standard error of the mean.  This is not particularly useful as we are interested in 

comparison of means, not in their individual values. For example, 1850 + 59 m/s 
versus 1782 + 89 m/s; 

 
 (b) Standard error of the difference in means e.g. 68 + 23.5 m/s. 
 
 (c) A confidence interval for the difference in means.  This is probably most useful, 

and gives far more information than the results of a hypothesis test. Consider two 
hypothetical studies of the same unit of measurements, where the 95% confidence 
intervals of the difference are: 

  
   (i)  -0.2 to 0.3 m/s 
 
   (ii)  -2.0 to -3.0 m/s 
 
   (iii)  -0.2 to 15 m/s 
 
 
  All give a  "non-significant"  result for the t-test (since the CI includes zero).  In (i) 

it is clear that any difference is less than 0.3, too small to be of interest.  In (ii) the 
interval is very wide  (the experiment was imprecise); there may be no treatment 
effect, but may be a difference as large as 3. In (iii), although the difference includes 
zero but the trend of difference leans toward the positive direction, which clearly 



14 

shows a lack of sample size or accuracy of treatment effect. The three studies lead to 
very different conclusions, yet results of the significance test are the same. 

 
 Example 1 (cont):  
 
 We can use our knowledge gained in Topics 2 and 5, to construct a 95% confidence 

interval (CI) of difference by using the expected t value (in this case, 1.99 ≅  2 for 
simplicity in calculation!). In our case, the 95% CI of the difference is:  68 + 2(23.5) 
= 21 m/s to 115 m/s. What this means is that if we keep sampling patients repeatedly 
from this population, 95% of the times, we would expected the observed differences 
in AVU between fracture and non-fracture patients lie between 21 m/s to 115 m/s - a 
pretty clear and convincing difference. Notice that the CI did not include a zero 
value. // 

 
 
4.3. ASSUMPTIONS AND THE CASE OF UNEQUAL VARIANCES 
 
   The t-test procedure as illustrated in Example 1 is based on a number of 

assumptions. The first and most critical one is that the two samples are independent. 
Practically, this means that the two samples are drawn from two different 
populations and in set language (Topic 3) that the elements of sample 1 are unrelated 
to the elements of sample 2. If this assumption is not held, then the t-test above is 
inappropriate. 

 
   The second assumption that we make is that the samples are drawn from 

normally distributed population. Fortunately, this assumption is less critical. The 
reason is that for modest sample sized samples, the Central Limit Theorem (Topic 5) 
applies and the sampling distribution for the sample means are approximately 
normal. If, however, the population is known to be non-normally distributed, then the 
non-parametric statistic of Wilcoxon Rank Sum (presented next section) will be used 
instead of the t-test. 

 
   The third and final assumption is that the two population variances are 

equal. For now, just examine the sample variances to see that they are approximately 
equal, later we will give a test for this assumption. Many efforts have been made to 
investigate the effect of deviations from the equal variance assumption on the t 
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methods for independent samples. The general conclusion is that for equal sample 
sizes, the population variances can differ by as much as a factor of 3 (i.e σ σ1

2
2
23= ) 

and the t methods will still apply. This is remarkable and provides a convincing 
argument to use equal sample sizes. When the sample sizes are different, the most 
serious case is when the smaller sample size is associated with the larger variance. In 
this situation and in others where the sample variances (s1

2  and s2
2 ) suggest that 

σ σ1
2

2
2≠ , there is an approximate t test using the statistic  

 

     t x x
s
n

s
n

=
−

+

1 2

1
2

1

2
2

2

    [8] 

 
 with the number of df given by: 
 

     
( )( )

( ) ( ) ( )111
11

1
22

2

21

−−+−

−−
=

nccn
nndf  [9] 

 

  where   c s n
s
n

s
n

=
+

1
2

1

1
2

1

2
2

2

/  

 (Welch, 1938). 
 
 
4.4. NON-NORMALLY DISTRIBUTED DATA I: RESPONSES AFFECT MULTIPLICATIVELY 
 
   In biological science, several measurements have at least one of the 

following properties: (i) mean values are more sensibly compared in terms of their 
ratios than in terms of differences; (ii) the standard deviation is proportional to the 
mean; and (iii) the measurements have a log-normal distribution (i.e. if X is log-
normally distributed then log(X) will be normally distributed). In these cases, it is 
necessary to transform data before a formal statistical test of significance can be 
carried out.  

 
 Example 2: The following data represent lysozyme levels in the gastric juice of 29 

patients with peptic ulcer and of 30 normal controls. It was interested to know 
whether lysozyme levels were different between two groups. 
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   Lysozyme levels in the gastric juice of two groups of subjects. 
   

 Group A (n=29) Group B (n=30) 
   

 0.2 10.4 0.2 5.4 
 0.3 10.9 0.3 5.7 
 0.4 11.3 0.4 5.8 
 1.1 12.4 0.7 7.5 
 2.0 16.2 1.2 8.7 
 2.1 17.6 1.5 8.8 
 3.3 18.9 1.5 9.1 
 3.8 20.7 1.9 10.3 
 4.5 24.0 2.0 15.6 
 4.8 25.4 2.4 16.1 
 4.9 40.0 2.5 16.5 
 5.0 42.2 2.8 16.7 
 5.3 50.0 3.6 20.0 
 7.5 60.0 4.8 20.7 
 9.8  4.8 33.0 
   
 Mean x1 = 14.31 x2  = 7.68 
 SD s1 = 15.74 s2  = 7.85 
 
 Firstly, let us apply the method in Example 1 to test for the difference. In this 

method, the observed difference between the two groups is x1 - x2  = 6.63 with 
pooled standard deviation of:  

 

   ( ) ( )
2

11 2
2

2
1

−+
−+−

=
mn

smsns  = ( ) ( )
23029

85.72974.1528 22

−+
+  = 12.37 

 

 then the standard deviation of (x1 - x2 ) is 6 63 1
29

1
30

. +  = 3.22  

 
 and the standardised distance is  t = 6.63 / 3.22 = 2.06 which is significantly greater 

than the expected t-value of 2.00 with 57 df (from the Table of t distribution). We 
would conclude that the two groups are different in lysozyme levels. 
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   However, a close inspection of the data reveals that (i) the standard 

deviation in group A is much higher than that in group B and (ii) the standard 
deviations vary systematically with the mean. For group A, the ratio of s1/x1 = 
15.74/14.31 = 1.10 and group B, s2 /x2  = 7.85/7.68 = 1.02. This simple calculation 
suggest that the data are not normally distributed and the above result (hence, 
conclusion) is not reliable. The data suggest a logarithmic transformation. The log-
transformed data of the above table is as follows:  

 
   

 Group A (n=29) Group B (n=30) 
   

 1.61 2.34 -1.61 1.69 
 -1.20 2.39 -1.20 1.74 
 -0.92 2.42 -0.92 1.76 
 0.10 2.52 -0.36 2.01 
 0.69 2.79 0.18 2.16 
 0.74 2.87 0.41 2.17 
 1.19 2.94 0.41 2.21 
 1.34 3.03 0.64 2.33 
 1.50 3.18 0.69 2.75 
 1.57 3.23 0.88 2.78 
 1.59 3.69 0.92 2.80 
 1.61 3.74 1.03 2.82 
 1.67 3.91 1.28 3.00 
 2.01 4.09 1.57 3.03 
 2.28  1.57 3.50 
   
 Mean x1 = 1.92 x2  = 1.41 
 SD s1 = 1.48 s2  = 1.32 
 
 then, the pooled standard deviation of two groups is:  
 

   s  = ( ) ( )
23029

32.12948.128 22

−+
+  = 1.40 
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 then the standard deviation of (x1 - x2 ) is equal to 1 40 1
29

1
30

. +  = 0.365 

 
 And the t-statistic is: t = (1.92-1.41) / 0.365 = 0.51 / 90.365 = 1.40, which is less 

than the expected value of 2 (with 57 df).  Furthermore, the 95% confidence interval 
of differences between the two groups is 0.51-2(0.365) = -0.22  to  0.51+(2(0.365) = 
1.24. Both calculations consistently suggest that the differences in lysozyme levels 
between the two groups is not statistically significant. 

 
 
 CONVERSION OF UNIT OF MEASUREMENTS  
 
 It may be noticed here that the confidence interval in log lasozyme is not informative 

per se, because the logarithm of lysozyme is not understandable unit of 
measurement. Its importance resides in the fact that it is easily translated into CI for 
the ratio of the two underlying mean levels. This is left as an exercise for the reader.  

 
 This example illustrates the importance of examining assumptions prior to any 

statistical analysis. // 
 
 
4.5. NON-NORMALLY DISTRIBUTED DATA II: PROPORTIONS 

 
  Example 3: The following data are adapted from the results of a randomised study 

comparing two methods for training patients with senile dementia to care for 
themselves. After two weeks of training, each patient was presented with 20 tests 
involving activities of daily living (unlocking a door, tying one's shoe laces, etc.) and 
the proportion of tests that were successful was recorded.  

 
 The proportions of successful tests out of 20 attempted (X) 
 for two groups of patients with senile dementia. 
   

 Group A (n=11) Group B (n=8) 
   

 0.05 0 
 0.15 0.15 
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 0.35 0 
 0.25 0.05 
 0.20 0 
 0.05 0 
 0.10 0.05 
 0.05 0.10 
 0.30 
 0.05 
 0.25 
   

 Mean 0.164 0.044 
 SD 0.112 0.056 
 
 
   If we apply the t-statistic in Example 1, we have the following results:  
 

    ( ) ( )
2710
056.7112.10 22

−+
+

=s  = 0.093 

 

 and the t-value is t =
−

+
=

0 164 0 0444

0 093 1
11

1
8

2 78. .

.
.  

 
 with 17 df, which is significant at the 5% level. 
 
   Before reaching a definite conclusion, let us examine the data a bit closely. 

In this data set, the two standard deviations (SD) differ by a factor of 2, and it is 
noteworthy that the group with the smaller mean proportion has the smaller SD. This 
even make intuitive sense that the proportion can not be less than zero! Indeed, the 
proportion data present a problem in the normal t-statistic, in that the variance is 
finite and mean dependent, since the maximum proportion must be equal to 1. For 
instance, it could be shown that when the proportion increases to 0.5, the SD is also 
expected to increase. The SD is expected to decline as the proportion approaches 1.   

 
   A method that may, in general, be expected to rectify the untoward 

consequence of unequal variance (heteroscedasticity) when the response variable is a 
proportion, say p, is to transform p by the arcsin (angular) transformation: Let 
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     A = arcsin p  

 
 A is the angle whose sine is the square root of p. It can be shown that A is effectively 

linear function of p for proportions in the interval from 0.25 to 0.75. In fact, over that 
interval, A is approximately equal to 0.285 + p. Therefore, in practice, if p is within 
the range 0.25 to 0.75, the arcsin transformation will be ineffective in reducing any 
inequality in variance. The arcsine transformation is very effective in p < 0.25 or p > 
0.75.  

 
 You will be asked to perform, a t test on the transformed data. Note that the two 

standard deviations of the transformed data are nearly equal.  
 
 
4.6. NON-NORMALLY DISTRIBUTED DATA III: COUNTS DATA 
 
 Example 4: The data in the following table represent the numbers of oral lactobacilli 

in the saliva of 7 subjects who had been vaccinated with heat-killed bacilli and six 
controls.  

 
 Counted numbers of oral lactobacilli in the saliva of two 
 groups of subjects. 
   

 Group A (n=7) Group B (n=6) 
   

 7925 3158 
 15643 3669 
 17462 5930 
 10805 5697 
 9300 8331 
 7538 11822 
 6297 
   
 Mean 10710.0 6434.5 
 SD 4266.4 3218.8 
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 Based on these data, the value of the t-ratio (standardised distance) for comparing the 
two means is 2.01 with 11 df, which is not significant at 5% level (expected t value 
of 11 df is 2.20).  

 
 We see that the two SDs are not too unequal, however, the variability is greater in 

group A, the group with larger mean. Furthermore, the two SDs seem to be 
proportional to the square roots of the means: 4266.4/ 10 710.  = 41.2 which is very 
close to the ratio in group B, 3218 8 6434 5 40 1. / . .= .  

 
   When, as here, the standard deviation is roughly proportional to the square 

root of the mean, the square roots transformation usually succeeds in equalising the 
SDs.  

 
   You are asked to confirm that the t-value for the square roots transformed 

data is 2.15. The difference between two groups still does not attain a statistical 
significance at 5% level, but at least this failure can not be attributed to an 
attenuating effect of unequal variability on the value of t.  // 

 
 
4.7. NON-NORMALLY DISTRIBUTED DATA IV: TIME TO OCCURRENCE OF AN EVENT 
 
 Example 5: The data in the following table are from, a randomised study comparing 

the effects of several combinations of poisons and treatments on the survival times of 
animals.   

 
  Group Values Mean SD 
    
  A 4.3, 4.5, 6.3,   7.6 5.675 1.567 
  B 9.2, 6.1, 4.9, 12.4 8.150 3.363 
    
  
 The method in Example 1, when applied to this data set, yields a t-ratio of 1.33, 

which is well below the expected value of 2.447 (6 df). The conclusion is, therefore, 
there was no statistical significance between two groups. 
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   However, the data show that two SDs seem to vary systematically with the 
means. Specifically, SD is proportional to x 2 . For example s/x 2  = 1.567 / ( )2675.5  = 

0.048, which is equivalent to 3.363/ ( )215.8  = 0.05. What this means in practice is 

that, the reciprocal transformation, Y = 1/X, is appropriate. Fortunately, the 
reciprocal transformation has physical meaning when, as here, the response variable 
is in units of time. If the response variable is the time until death or some other event, 
the reciprocal is related to the death rate or more generally to the rate at which the 
event occurs.  

 
   You will be asked to perform a t-test to the reciprocals of the measurements 

in the data. 
 
 
4.8. NON-PARAMETRIC ANALYSIS OF UNPAIRED DATA: THE WILCOXON RANK SUM 

TEST. 
 
 The two sample t test of the previous section was based on several assumptions as 

described in II(C). There is, however, an alternative test procedure that requires less 
stringent assumptions. This test, called the Wilcoxon's Rank Sum (WRS) test, is 
discussed here. 

 
   The assumptions for this test are that we have two independent random 

samples taken from two populations. The WRS test provides a procedure for testing 
that two populations are identical but not necessarily normal. Since the two 
populations are assumed to be identical under the null hypothesis, independent 
random samples from the respective populations should be similar. One way to 
measure the similarity between the samples is to jointly rank (from lowest to highest) 
the measurements from the combined samples and examine the sum of the ranks for 
measurements in sample 1 (or, equivalently, sample 2). Under the null hypothesis of 
identical populations, the sum of the ranks for a sample will be proportional to the 
sample size. We let T denote the sum of the ranks for sample 1. Intuitively, if T is 
extremely small (or large), we would have evidence to reject the null hypothesis that 
the two populations are identical.  

 
   Under the null hypothesis and according to the general principle of section 

I, the statistic T, will have a sampling distribution with mean and variance given by: 
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 If both sample sizes are 10 or larger, the sampling distribution of T is approximately 

normal with mean 0 and variance 1 (standardised normal distribution). 
 
  The theory behind the WRS test assumes that the population distributions are 

continuous, so that there is zero probability that any two observations are identical. 
In practice, there will often be ties - two or more observations with the same value. 
For these situations, each observation in a set of tied values receives a rank score 
equal to the average of the ranks for the set. For example, if two observations are tied 
for the rank 3 and 4, each is given a rank of 3.5; the next higher value receives a rank 
of 5, and so on. When there are ties, there is a correction, for the variance formula. 
Then σT

2  is: 
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 where ti  denotes the number of tied ranks in the ith group.  
 
 From a practical standpoint, however, unless there are many ties, the correction will 

have very little impact on the value of σT
2 . 

 
 Example 6: The following data are dissolved oxygen measurements (in ppm) 

collected from 12 samples in lake A and another 12 samples in a lake B. It is of 
interest to know whether the distributions of measurements in lakes A and B are 
identical.  

 
 Lake A: 11.0, 11.2, 11.2, 11.2, 11.4, 11.5, 11.6, 11.7, 11.8, 11.9, 11.9, 12.1 
 Lake B: 10.2, 10.3, 10.4, 10.6, 10.6, 10.7, 10.8, 10.8, 10.9, 11.1, 11.1, 11.3 
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 To apply the Wilcoxon's Rank Sum test, we firstly jointly rank the combined sample 
of 24 measurements by assigning the rank of 1 to the smallest, and so on. When two 
or more measurements are the same, we assigned all of them a rank equal to the 
average of the ranks they occupy.  

 
  Value Rank Rank1 Ties 
    

  10.2 1 1 1 
  10.3 2 2 1 
  10.4 3 3 1 
  10.6, 10.6 4.5 4 2 
  10.7 6 5 1 
  10.8, 10.8 7.5 6 2 
  10.9 9 7 1 
  11.0 10 8 1 
  11.1, 11.1 11.5 9 1 
  11.2, 11.2, 11.2 14 10 3 
  11.3 16 11 1 
  11.4 17 12 1 
  11.5 18 13 1 
  11.6 19 14 1 
  11.7 20 15 1 
  11.8 21 16 1 
  11.9, 11.9 22.5 17 2 
  12.1 24 18 1 
    

 Sum  216 
 
 For all groups with ti = 1, there is no contribution for the variance σT

2 . Thus, we need 
only be concerned with ti =2, 3. Then [10] and [12] becomes:  
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         = 298.9 
 
   σT =17.29 
 
 And the standardised distance is: 
 
   z = (216 - 150) / 17.29 = 3.82  
 
 which exceeds 1.645 (at 5% level); we conclude that the dissolved oxygen 

measurements are different between lakes A and B. 
 
 Notice the variance without correcting for ties is:  
 

   ( )1
12 21

212 ++= nnnn
Tσ  = ( )( )

12
251212  = 300. 

 
 which is not appreciatively different to 298.9.  // 
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V. DIFFERENCES BETWEEN MEANS: PAIRED SAMPLES 
 
5.1. THE PAIRED T-TEST 
 
 There is a fairly popular type of experimental design in which two treatments are 

applied to the same subject in two different periods. The statistical solution to this 
design is called the paired t-test (as oppose to the unpaired t-test presented in 
Example 1).  

 
 Example 7: The following table presents data from a study to compare two 

treatments  (A and B)  in the clotting times of plasma  (in minutes)  for 8 patients. 
 
 
 ID Treatment A Treatment B Difference 
   
 1 10.6 10.2 0.4 
 2 9.8 9.4 0.4 
 3 12.3 11.8 0.5 
 4 9.7 9.1 0.6 
 5 8.8 8.3 0.5 
   
 Mean 10.24 9.76 0.48 
 SD 1.73 1.76 0.084 
 

Do the data present sufficient evidence to claim for treatment effect?   
 
 We note that the difference between the two treatments is rather small (|10.24 - 9.76| 

= 0.48), considering the variability of the data and the small number of 
measurements involved. At first glance, it would seem that there is little evidence to 
indicate a difference between the population means, a conjecture that we may check 
by the method outlined in Example 1 (unpaired t-test). In this method, the pooled 
estimate of the common variance is s2  = 1.748 (i.e. s = 1.32), and the standard error 

of the difference is 1.32 1
5

1
5

+  = 0.83. The calculated value of t is then 0.48/0.83 = 

0.57, which is much lower than its expected value of 2.306 (8 df). We would be 
tempted to conclude that there was no significant difference between the two 
treatments.  
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 A second glance at the data reveals a marked inconsistency with this conclusion. We 
note that the clotting times of plasma in treatment A is larger than treatment B for 
each of the five patients. These differences, recorded at 0.48, on average. 

 
 Suppose that we were to use y, the number of times that treatment A is larger than 

treatment B, as a test statistic as was done in Binomial distribution. Then the 
probability that treatment A would be larger than B, assuming no difference between 
the time, would be p = 0.5, and y would be a binomial random variable. If the null 
hypothesis were true, the expected value of y would be np = 5(0.5) = 2.5. If we 
choose the most extreme values of y, y = 0 and y = 5, as the rejection region for a 
two-tailed test, then α = p(0) + p(5) = ( ) 0625.05.02 5 = . We would then reject the 

null hypothesis. Certainly, this is the evidence to indicate that a difference exists in 
the mean clotting time of the two treatments.  

 
 What went wrong ? 
 
  The explanation for this seemingly inconsistency is quite simple. The t test 

described earlier is not the proper test to be used for this kind of study design. We 
mentioned in section II(c) that one of the assumptions of the t-statistic is that two 
samples are independent and random. Certainly, the independence requirement was 
violated by the manner in which the experiment was conducted. The pairs of 
measurements for a particular patients are definitely related. A glance at the data will 
show that the time readings are of approximately the same magnitude for a particular 
patient but vary from one patient to another. This is, of course, exactly what we 
might expect.  

 
 The proper analysis of data would utilise the five difference measurements (column 

3) to test the hypothesis that the average difference is equal to zero, or equivalently, 
to test the hypothesis that µ µ µD A B= − = 0 against the hypothesis that µ D ≠ 0. Now 
the standard deviation of the differences is 0.084, i.e. standard error = 
0 084

5
0 037. .= . The standardised distance is then 0.48 / 0.037 = 12.8, which is much 

higher than expected value of 2.776 (with 4 df, at 5% significance level). 
Furthermore, the 95% confidence interval of the difference is: 0.48 - 2.776(0.037) 
=0.38  to 0.48 + 2.776(0.037) = 0.58 minutes. We conclude that treatment A has a 
significantly higher clotting time than treatment B. // 
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5.2. NON-PARAMETRIC ANALYSIS OF PAIRED DATA: THE WILCOXON SIGNED RANK 

TEST 
 
 This test makes use of the sign and the magnitude of the rank of the differences 

between pairs of measurements, provides an alternative to the paired t-test as 
presented above. The formal idea for Wilcoxon Signed Rank test is that the 
population distribution of differences is symmetrical about D; the test is sensitive to 
the distribution of differences being shifted to the right or left of D. In most case D is 
0; otherwise, we subtract D from every measurement and proceed as if D = 0. The 
test uses the non-zero differences ranked in absolute value from lowest to highest. If 
two or more measurements have the same nonzero difference (ignoring sign) we 
assign each difference a rank equal to the average of the occupied ranks. The 
appropriate sign is then attached to the rank of each difference.  

 
 By defining  n = the number of pairs of observations with a nonzero difference 
     T+ = the sum of the positive ranks. 
     T- = the sum of the negative ranks. 
     T  = the smallest of T+ and T- ignoring their signs. 
 
 then the mean and standard deviation of the rank is: 
 

    
( )

4
1+

=
nnµ       [13] 

 

 and  
( )( )

24
121 ++

=
nnnσ      [14] 

 If we there are ties, the standard deviation would become: 
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 where   ti  denotes the number of tied ranks in the ith group.  
 

 The statistic 

( )

σ
4
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nnT
z  is approximately normally distributed with mean 0 and 

variance of 1. 
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 Example 8: Two different drugs were compared on each of 10 different patients in 

terms of the time (in minutes) to reach maximum concentration. The data are as 
follows: 

 
 ID Drug A Drug B Difference 
   
 1 312 346 -34 
 2 333 372 -39 
 3 356 392 -36 
 4 316 351 -35 
 5 310 330 -20 
 6 352 364 -12 
 7 389 375 14 
 8 313 315 -2 
 9 316 327 -11 
 10 346 378 -32 
   

 
 To apply the Wilcoxon Signed Rank test, we firstly rank the absolute values of the 

n=10 differences. The appropriate sign is then attached to each rank, as follows: 
 
 
 ID  Rank of  Rank with 
  Difference absolute appropriate  
   difference sign 
   
 1 -34 7 -7 
 2 -39 10 -10 
 3 -36 9 -9 
 4 -35 8 -8 
 5 -20 5 -5 
 6 -12 3 -3 
 7 14 4 4 
 8 -2 1 -1 
 9 -11 2 -2 
 10 -32 6 -6 
   

 
 The sum of positive and negative ranks are as follows: 
 
   T+ = 4, 
   T- = -7 + (-10) + . . . + (-6) = -51 
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 Thus, T - the smallest of T+ and T- ignoring the sign, is 4. 
 
 For a two-tailed test with n=10 and α=0.05, we see from the Wilcoxon Table that we 

will reject the null hypothesis if T is less than or equal to 8. Or alternatively, we 
calculate the standardised distance z as follows: 
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 which is greater than 1.96 (at 5% level of significance). Thus, we conclude that the 
two drugs have different times to reach maximum plasma concentration.  // 
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VI. DIFFERENCES BETWEEN MEDIANS 
 
 Recall that the median is a measure of central tendency, in which half of the 

observations are less than and half of the observations is exceeding it.  
 
 
6.1. TEST STATISTIC FOR DIFFERENCE BETWEEN TWO MEDIANS 
 
 One can test the null hypothesis that two samples came from a population with the 

same median by the median test (Mood 1950. Introduction to the Theory of 
Statistics. McGraw-Hill, New York 394-395 pp). The procedure is to set up a table 
as in the following example, and then apply the Chi-square or Fisher's exact test. 

 
  
 Example 9: Data on body sway were collected for two sample of subjects, the 

number of subjects who were higher or lower than the median were as follows: 
 
 
 Number Sample 1 Sample 2 Total 
    

 Above median 6 6 12 
 Not above median 3 8 11 
 Total 9 14 23 
    

 
 Chi square statistic χ2  = 0.473, which is lower then the expected value of 5.02 (with 

1 df), we conclude that the medians of two samples are equivalent.   
 
 This conclusion is consistent with a Fisher's exact test (which we will introduce in 

the next section).  
 

   Fisher's exact test = ( )
!8!3!6!6

!23/!14!9!11!12  = 0.18657  // 

 
 
6.2. CONFIDENCE INTERVAL FOR A MEDIAN 
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 To find a confidence interval for a population median, we first need to calculate the 
following quantities: 
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nNnr   and  








×++=
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1 nNns  

 where n is the sample size; N is the appropriate value from the standard normal 
distribution. Then round r and s to the nearest integers. The n sample observations 
need to be ranked in increasing order of magnitude and the rth to sth in the ranking 
determine the CI for the population median. This approximation is satisfactory for 
most sample size. The exactly method based on the binomial distribution can be used 
instead as shown in the example below. 

 
 Example 10:  
 
 Suppose that the median systolic BA among 100 patients was 146 mmHg. Using the 

above formula we have  

  40
2

10096.1
2

100
=








×−=r  and 61

2
10096.1

2
1001 =








×++=r  

 From the original data, the 40th observation in increasing order is 142 mmHg and 
the 61st is 150 mmHg. Therefore, the 95% CI for the population median is 142 
mmHg to 150 mmHg. // 

 
 
6.3. CONFIDENCE INTERVAL FOR DIFFERENCE BETWEEN TWO MEDIANS 
  
 Let x x1 2, ,. . . , xn   represent the n observations in a sample from one population and 

y y1 2, , . . . , ym the m observations from a second population, where both populations 
are thought not to come from normal populations. The difference between the two 
population medians or means is estimated by the median of all possible n × m 
differences (x yi j− ) for i n= 1, ,  and j = 1,,m.  

 
 For studies with small sample size, the CI is calculated based on the following 

statistic: 
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 where W is the percentile distribution of the Mann-Whitney test statistic or of the 

equivalent Wilcoxon two sample test statistic. The Kth smallest to the Kth largest of 
the n × m are the required CI. Values for K for a given m and n is given in the 
appendix: 

 
 The CI for the difference between the two population medians is also derived 

through these n × m differences. For studies with each sample size > 20, we can 
calculate CI as follows: 
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 rounded up to the next integer value, where N is the appropriate value from the 

standard normal distribution (for example, 1.96 for 95% CI).  
 
 Example 11: Consider the data on the globulin fraction of plasma (g/l) in two groups 

of 10 patients as follows: 
 
 Group 1: 38 26 29 41 36 31 32 30 35 33 
 Group 2: 45 28 27 38 40 42 39 39 34 45 
 
 The computations are made easier if the data in each group are first ranked into 

increasing order of magnitude and then all the differences for group 1 - group 2 
calculated as in the following table: 

 
  

 26 29 30 31 32 33 35 36 38 40 
  

27 -1 2 3 4 5 6 8 9 11 14 
28 -2 1 2 3 4 5 7 8 10 15 
34  . . . 
38   
39   
39 
40 
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42 
45 
45 -19 -16 -15 -14 -13 -12 -10 -9 -7 -4 
  
 

 The estimate of the difference in population medians is now given by the median of 
these differences. From 100 differences in this table, the 50th percentile is -6 g/l and 
the 51st is -5 g/l, so the median is -5.5 g/l. 

 
 To calculate the 95% CI for the difference in population medians, the value of K is 

found to be 24 for n=10 and m=10. The 24th smallest difference is -10 g/l and the 24 
largest difference is +1 g/l.  // 
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VII. DIFFERENCES BETWEEN VARIANCES AND COEFFICIENTS OF 

VARIATION 
 
7.1. DIFFERENCES BETWEEN TWO VARIANCES 
 
 One of the major applications of a test for equality of population variances is for 

checking the validity of the assumption (that is σ σ1
2

2
2= ) for a two-sample t-test. First 

we hypothesise that two populations of measurements that are normally distributed. 
We are interested in comparing the variance of populations 1 and 2 as σ1

2 and σ2
2, 

respectively. We denote their respective sample estimates as s1
2  and s2

2 . 
 
 When the independent samples have been drawn from the respective populations, the 

ratio F = s
s

s
s

1
2

2
2

1
2

2
2

1
2

2
2

2
2

1
2/ σ

σ
σ
σ

=  possesses a probability distribution in repeated sampling 

referred to as an F distribution (Topic 5). Under the hypothesis of σ σ1
2

2
2= , the 

statistic becomes F = s2
2 /.s1

2  or F = s1
2 /s2

2 . (depend whether s1
2 <s2

2 .or s1
2 >s2

2 ) is the test 
statistic with n1 1−  and n2 1−  df.  

 
 Example 2 (Continued):  
 
 In this data set, for a sample of 29 patients, the standard deviation of lysozyme is 

15.74 (s1
2  = 247.7) and for a sample of 30 patients the standard deviation is 7.85 (s2

2  
= 61.62).  

 
 To test whether the two variances are different, we used the statistic described as 

above i.e. F = 247.7 / 61.62 = 4.02. Now, the expected value of the F variate with 28 
and 29 df is 1.84. Since the observed F is much larger than its expected value, we 
conclude that the two variances are, indeed, different. // 

 
 
7.2. DIFFERENCES BETWEEN TWO COEFFICIENTS OF VARIATION 
 
 Recall from Topic 3 that a coefficient of variation (CV) is defined as the ratio of 

standard deviation (s) over the sample mean (x ), i.e. CV = s/x . 
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 Now, suppose that we have data from two samples of subjects, in which two 
coefficients of variation are obtained. Lewontin (1966) has shown that the variance 
ratio  

     F = 
( )
( )

2
2
log

1
2
log

s

s
  

 
 can be used analogously to the ratio of two variances above, to test for difference 

between two coefficients of variation. Notice that F is distributed with n1 1−  and 
n2 1−  df. In this statistic, ( )

1
2
logs  refers to the variance of the logarithmic data for 

sample 1, and ( )
2

2
logs  refers to variance of the logarithmic data for sample 2.  

 
 Unfortunately, we are faced with the requirement of the variance ratio test that the 

two underlying distributions be normal (or nearly normal). Thus, this test must be 
applied with caution, for if the two sets of sample data are, in fact, from normal 
populations, the logarithms of the data will not be normally distributed; and the 
requirement here is that the logarithm be normally distributed. 
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VIII. DIFFERENCES BETWEEN TWO PROPORTIONS 
 
8.1. THE T-TEST FOR DIFFERENCES BETWEEN TWO PROPORTIONS 
 
 UNPAIRED SAMPLES 
 
 Many experiments involve the comparison of two proportions, which could be 

considered as binomial parameters. For comparisons of this type, we assume that 
independent random samples are drawn from two binomial populations with 
unknown parameters designated by π1 and π2 . If y1 is the number of successes 
observed for the random sample of size n1 and y2  is number of successes observed 

for the random sample of size n2 , then the point estimate of π1 and π2  are: p y
n1

1

1

=  

and p y
n2

2

2

= , respectively.  

 

 We learned earlier (Topic 4) that the variance of p1  and p2 are ( ) ( )
1
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1
n

pppSD −
=  

and ( ) ( )
2

22
2

1var
n

ppp −
= . It follows that their respective standard deviation is 

( ) ( )
2

22
2

1
n

pppSD −
= .  

 
 Also, since the two samples are assumed to be independent, the expected value of the 

difference is  
 
    E( p1  - p2 ) = π1 - π2      [16] 
 
 and the variance of the difference is  
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 Thus, according to the general principle presented in section 1, to test for difference 
between two proportions we need to calculate the standardised distance: 
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 However, under the hypothesis that π π1 2=  = π , we can estimate π  by a p y y
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and hence the standard deviation of the difference is:  
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 then the standardised distance becomes: 
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 It follows that 95% confidence interval of (π1 - π2 ) can be constructed by the 
statistic:  ( p1  - p2 ) + ( )21645.1 ppSD −× . 

 
 In summary: 
 
   Population 
  Characteristics 1 2  
     
  Population proportion π1  π2    
  Sample size n1 n2  
  Number of successes y1 y2   

  Sample proportion p y
n1

1

1

=  p y
n2

2

2

=   

  Variance ( )11 1 pp −  ( )22 1 pp −  
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 Example 12: In a recent opinion poll of 200 people, it was found that 58 out of  100 
people interviewed said they would vote for Paul Keating, while 46 people out of 
another 100 people interviewed said they would vote for John Hewson. Is it true that 
Paul Keating has a higher electoral appeal than John Hewson or the difference was 
just due to chance fluctuation? 

 
 We use the Binomial theory to answer this question. Let the proportion of people 

who said they would vote for Keating be p1 0 58= .  and for Hewson p2 0 46= . . Of 
course, these are only estimates, because we do not know the true proportion of 
voters for the two leaders π1 and π2 . Under the hypothesis of no difference e.g. 
π1=π2  = π , we can estimate π  by  p = (58+46)/200 = 0.52. Then, the standard 
deviation of the difference ( )21 pp −  is  

 

    SD ( )21 pp −  = ( ) 07.0
100

1
100

152.0152.0 =





 +− .  

 
 The standardised distance between the two population proportions is then   
 

    z =  0 58 0 46
0 07

1 7. .
.

.−
= .  

 
 Since this distance is higher than the expected value of 1.645 (from the standardised 

normal distribution table), we conclude that Paul Keating has a better chance of 
election than John Hewson.  // 

 
 
  PAIRED OR MATCHED SAMPLES 
 
 As we can see from the above example, we have two separate groups of subjects, 

which can be regarded as independent samples. Sometimes, we observe the 
proportion of an attribute from the same group of subjects in two different occasions 
or two matched groups; this is called paired samples. Difference between two 
proportions in this design can be tackled by a statistic called the McNemar's test. 

 
 Example 13: The following data represent results of 32 subjects showing numbers 

with + or without (-) sleeping difficulties among marijuana users and matched 
controls. 
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   Marijuana 
   + - Total 
     
  Control 
  + n11 = 4 n12  = 9 n1. =13 
  - n21 = 3 n22  = 16 n2.  = 19 
  Total n.1 = 7 n.2  = 25 n.. = 32 
     
 
 The comparison of paired proportions is based on the frequencies of pairs with 

different outcomes. The McNema's test is given by:  
 

    
( )

2112

2
21122 1
nn

nn
+

−−
=χ     [20] 

 
 which is referred to the Chi squared distribution with 1 df.  
 

 In our example, the actual value of χ2   is 
( )

39
139 2

+
−−

 = 25

12
 = 2.08, which is less than 

its expected value under the χ2  distribution with 1 df (5.02). We conclude that there 
was no difference between the two groups with respect to sleeping habits.  // 

 
 
8.2. MEASURE OF ASSOCIATION: THE FISHER'S EXACT TEST 
 
 The Binomial based test as introduced in Example 12 is powerful when the sample 

size is reasonably large. In fact, we will learn that when the sample size is small and 
hence the normal approximation is not very accurate, the test can be unreliable.  

 
 When sample size is small, another test of association based on the hypergeometric 

probability distribution should be used; it is exact probability, and hence called 
Fisher-Irwin's exact test, so named after the two prominent statistician in this 
century. 
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 Consider the following typical setting which most in epidemiological studies often 
result in. We restrict our attention to the four-fold table in which the frequencies n1., 
n2. , n.1, n.2  are fixed at the observed values.  

 
   Characteristics B 
  B Not B Total 
   

 Characteristics A  
  A n11  n12  n1. 
  Not A n21 n22  n2.  
  Total n.1 n.2  n.. 
   
 
 
 The exact test consists of evaluating the probability associated with all possible 2x2 

tables which have the same row and column totals as observed data, making the 
assumption that the null hypothesis is true. The null hypothesis is that the row and 
column variables are unrelated.  

 
 Under this restriction, the exact probabilities associated with the cell frequencies n11 , 

n12 , n21, n22  may be derived from the hypergeometric probability distribution as 
follows: 

 

   ( )
!!!!!

!!!!,,,
22211211..

2.1..2.1
22211211 nnnnn

nnnnnnnnP =    [21] 

 
 This is called the Fisher-Irwin "exact" test statistic for examining the above 

probability. 
 
 Example 14: Consider the following data on the number of subjects with a certain 

disease, classified by sex. It is interested to assess the exact probability for each cell 
in the table and hence the association between sex and the disease.  

 
   Sex 
  Males Females Total 
   

 Disease  
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  Yes 2 3 5 
  No 4 0 4 
  Total 6 3 9 
   
 

 The exact probability associated with the table is 5 4 6 3
9 2 3 4 0

0 119! ! ! !
! ! ! ! !

.= . // 

 
8.3. MEASURE OF ASSOCIATION IN PROSPECTIVE STUDY: THE RELATIVE RISK 
 
 In a prospective study, groups of subjects are followed up to see whether an outcome 

of interests occurs. Many clinical trials and longitudinal studies are of this design; so 
are too observational studies where it is impossible to randomise the feature of 
interest such as BMD. We can assess the association between risk factors and an 
outcome by calculating the proportion of an outcome for each risk group and then 
contrast them in a ratio. We call this the relative risk (RR).  

 
 The data of this design can be summarised as follows: 
 
   Outcome 
  Yes No Total Proportion 
   

 Risk factors  
  Yes n11  n12  n1. p n n1 11 1= / .  
  No n21 n22  n2.  p n n2 21 2= / .  
  Total n.1 n.2  n.. 
   
 
 Then the relative risk is defined by: 
 

    RR = p
p

1

2

 = n n
n n

11 1

21 2

/
/

.

.

   [22] 

 
 The standard deviation of  ln(RR) is given by: 
 

    SD(RR) = 1 1 1 1

11 1 21 2n n n n
− + −

. .

 [23] 
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 Example 15: The following data represent a longitudinal study in which 283 subjects 

were followed up for 5 years. The number of fractures classified by baseline bone 
mineral density (BMD) were as follows: 

 
 
   Outcome 
  Fracture No fracture Total Proportion 
   

 Baseline BMD  
  Low 15 90 105 0.143 
  High 8 170 178 0.045 
  Total 23 260 283 
   
 
 Using the above statistic, the relative risk is: 
 

     RR = .
.
143
045

 = 3.18 

   and   ln(RR) = ln(3.18) = 1.156 
 

 The SD of ln(RR) is: SD(ln RR) = 1
15

1
105

1
8

1
178

− + −  

           = 0.42 
 
 Then 95% interval for ln(RR) is : 
 
     1.156 - 2(0.42)  to 1.156 + 2(0.42) 
    <=> 0.316    to 1.996 
 i.e the 95% CI for RR is:  
     1.37   to 7.36 // 
 
  
8.4. MEASURE OF ASSOCIATION IN CROSS-SECTIONAL STUDY: THE ODDS RATIO 
 
 In case-control or retrospective studies, subjects are selected based on the outcome 

(as oppose to prospective studies where subjects are selected based on the risk 
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factors or the characteristic defining the groups). In retrospective, we can not 
measure the risk of the outcome because of the ways the subjects were sampled. 
Furthermore, because we can get any value of risk we want by varying the numerator 
and denominator (number of cases and control) that we choose to study, and so, the 
relative risk as presented earlier is not a valid test.  

 
 We need the a method of calculations based on within each group. Here we consider 

a very popular test which was originally proposed in the 1950s for 2x2 tables that are 
not a function of Chi square statistic; it is called the odds ratio.  

 
 We will study this test by using the following example. 
 
 Example 16: Consider the following hypothetical, cross-sectional data on the 

association between .maternal age and birth weight.  
 
   Weight 
  Low Normal Total 
   

 Maternal Age  
  Young 20 80 100 
  Mature 30 270 300 
  Total 50 350 400 
   
 
 The significance of the association between maternal age and birth weight may be 

assessed by means of the standard Binomial test.   
 
 Frequently, one of the two characteristics being studies is antecedent to the other. In 

this example we are considering maternal age is antecedent to birth weight. A 
measure of the risk of experiencing the outcome under study for the young mothers 
is presented as follows: 

 

   ( )
( )YoungNormalP

YoungLowP
young |

|
=Ω  

 
 We could estimate this risk by using our observed data as follows:  
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   O(young) = 20 100
80 100

20
80

/
/

=  = 0.25. 

 
 Thus, for every 4 births weight normal to young mothers, there is one abnormal birth 

weight. 
 
 Similar, a measure of the risk of experiencing the outcome under study for the old 

mothers is presented as follows: 
 

   ( )
( )OldNormalP

OldLowP
old |

|
=Ω  

 which is estimated by:  
    

   O(old) = 30
270

 = 0.11 

 that is, the odds that an old mother will deliver an offspring abnormal weight is 0.11 
 
 The two odds may be contrasted to provide a measure of association as follows: 
 

   OR = 
O
O

young

old

 = n n
n n

n n
n n

11 12

21 22

11 22

12 21

/
/

=     [24] 

 
 In our example the odds ratio is  
 

   OR = 20 270
30 80

2 25×
×

= .  

 
 indicating that the odds of a young mother delivering an offspring with abnormal 

birth weight are 2.25 times those for an old mother. 
 
 The standard deviation of OR is given by: 
 

   SD(OR) = OR
n n n n

× + + +
1 1 1 1

11 12 21 22

   [25] 

     = 2.25 × + + +
1
20

1
80

1
30

1
270

 

     = 0.71 
 The 95% CI of the odd ratio is then: 2.25 + 1.96(0.71). // 
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8.5. MEASURE OF ASSOCIATION IN COMPARATIVE STUDY: RELATIVE DIFFERENCE 
 
 In comparative clinical trials, treatments are assigned to subjects at random. The 

measure of association is sometimes hampered by the fact that subjects are allowed 
to prematurely withdraw from the study for various (including ethical) reasons. The 
following example presents a measure of association using the idea of relative 
difference. 

 
 Example 17: Suppose that the data in the following table resulted from a trial in 

which one treatment was applied to a sample of n1=80 patients randomly selected 
from a total of n=150 patients and the other was applied to the remaining n2=70 
patients. 

 
 
  No. of patients Proportion improved 
   
  Treatment 1: 80 (n1) 0.60  ( p1) 
  Treatment 2: 70 (n2) 0.80  ( p2 ) 
  Total 150 (n) 0.69  (p) 
   
 
 For this data, the statistical significance of the difference between the two 

improvement rates can be tested using the binomial theory as described earlier 

(Example 9). In that method we have: 
( ) 






 +−

−
=

70
1

80
169.0169.0

6.08.0z  = 2.18, which 

indicates a significant difference at the 0.05 level.  
 
 Now, if we consider the simple difference between p2  and p1  (d = p2  - p1  = 0.2) 

which implies that every 100 patients given the first treatment, an additional 20 
would have been expected to improve had they been given the 2nd treatment. The 

estimate standard deviation of d is ( ) ( )
2

22

1

11 11
n

pp
n

pp −
+

−  = 0.07. An approximate 
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95% CI for the difference underlying the rates of improvement is 0.20 + 1.96(0.07 or 
between 0.06 and 0.34. 

 
 But what we have are just sample data, we do not know the true rate of improvement 

in either treatment group. Let π1 be the proportion improving in the population of 
patients who are given the 1st treatment and π2  for the same indicator for treatment 
2. Let f denote the proportion of patients, among those failing to respond to the 1st 
treatment, who would be expected to respond to the second treatment. It is then 
assumed that  

 
    ( )112 1 πππ −+= f  

 
 that is, the improvement rate under the 2nd treatment is equal to that under the first 

plus an added improvement rate which applies only to patients who fail to improve 
the 1st treatment. In other words,  

 

    f =
−

−
π π

π
2 1

11
 

 this is called the relative difference (RD), which can be estimated by: 
 

    RD = p p
p

2 1

11
−

−
    [26] 

 
 The standard deviation of RD is approximately (Sheps 1959): 
 

   SD(RD) = ( ) ( ) ( )
1

112

2

22

1

111
1

1
n

ppRR
n

pp
p

−
×−+

−
−

 

 
 Walter (1975) showed that, more accurate inferences about f could be made by 

taking log(1-RR) as normally distributed with mean of log(1-f) and standard 
deviation of  

 

   ( )[ ] ( ) ( )11

1

22

2
11

1log
pn

p
pn

pRDSD
−

+
−

=− .  [27] 

 
 For the data in this example, we have: 
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     RD = 0 8 0 6
1 0 6

0 5. .
.

.−
−

=   

 
 (implying that for every 100 patients who fail to improve under the 1st treatment, 50 

would be expected to improve under the 2nd treatment). The SD of ln(1-RD) is  
 

   ( )[ ] ( ) ( )4.080
6.0

2.070
8.01log +=− RDSD  = 0.28 

 
 Then, 95% CI for log(1-f) is -0.69 + 1.96× 0.28 = -1.24 to -0.14.. By taking antilog, 

this interval is equal to 0.13 to 0.71.  // 
 
 
8.6. MEASURE OF AGREEMENT: THE KAPPA STATISTIC 
 
 Sometimes, a patient is diagnosed by two investigators, but using exactly the same 

qualitative scale of measurement as mild, moderate, severe, etc. If the diagnosis is 
repeated in several patients, the results can be summarised in 2x2 table as follows: 

 
   Investigator A 
  1 2 3 Total 
   

 Investigator B  
  1 n11  n12  n13 n1.   
  2 n21 n22  n23 n2.    
  3 n31 n32  n33 n3. 
  Total n.1 n.2  n.3 n.. 
   
 
 Of course, the table could be expanded easily to accommodate more categories, but 

for the purpose of illustration, it is presented with 3 categories. 
 
 Obviously, the proportion of agreement is equal to the sum of diagonal cells divided 

by total sample size: 
 

     p n n n
n

=
+ +11 22 33

..

  [28] 
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 But we can see that this statistic is inadequate as a measure of reliability, because it 

may be that some agreements could be purely due to chance. In fact, the overall 
proportion of agreement expected by chance alone is, say, 

 

     
( )2

..

3..32..21..1

n
nnnnnnpchance

++
=  [29] 

 
 So, a better measure of agreement than p alone is (p - pchance), that is how much 

agreement exists beyond the amount expected by chance alone. But we want to have 
an index with maximum value of 1 to indicate a perfect agreement and close to 0 for 
a poor agreement. The kappa statistic is built based on this concept and is given by: 

 

     κ =
−
−

p p
p

chance

chance1
   [30] 

 the standard deviation of κ is:  
 

    SD(κ) = 
( )

( ) ( )∑ +−+
− i

iiiichancechance
chance

pppppp
pn

....
2

2
.. 1

1  

 
  
 However, a very good approximate value for SD(κ) can be used: 
 

    SD(κ) = ( )
( )21

1

chancepn
pp

−

−   [31] 

 
 
  Example 18: Suppose that 100 patients were assessed by two investigators on the 

severity of adverse reaction. The results are as follows: 
 
   Investigator A 
  Mild Moderate Severe Total 
   

 Investigator B  
  Mild 20 12 8 40 
  Moderate 2 15 13 30 
  Severe 8 2 20 30 
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  Total 30 29 41 100 
   
 
 
 The observed proportion of agreement is:   
 

     p =
+ +

=
20 15 20

100
0 55.  

 
 And the proportion of agreement expected by chance is: 
 

     ( ) ( ) ( ) 33.0
100

413029303040
2 =

×+×+×
=chancep  

 
 The Kappa statistic (κ) is then: 
 

      κ = 0 55 0 33
1 0 33

0 328. .
.

.−
−

=  

 

 With approximate SD  SD(κ) = ( )
( )233.01100

55.0155.0
−

−  = 0.074 

 
 95% CI of κ is then:  0.328 - 2(0.074) to 0.328 + 2(0.074) 
    <=>  0.18    to 0.476 
 
 There is no golden rule of interpretation of κ , however, the following guidelines 

may be helpful: 
 
   <0.20:  Poor agreement 
   0.21 - 0.40 Fair agreement 
   0.41 - 0.60 Moderate agreement 
   0.61 - 0.80 Good agreement 
   0.81 - 1.00 Very good agreement 
 
 
 
IX. DIFFERENCES BETWEEN INDICES 
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 Example 19: Consider the following data which represent the number diversity of 
food items in the diet of cities A and B. The aim is to test whether the diets in these 
city are different. 

 
  Diet Item A B 
   ( f1) ( f2 ) 
     
  Oak 47 48 
  Corn 35 13 
  Black berry 7 8 
  Beech 5 . 
  Cherry 3  
  Pine . 23 
  Grape . 11 
  Other 2 2 
     
  Total 99 105 
 
 The Shannon's index of diversity (H) and its variance for city A (n1 99= ) is: 
 

   
( )

1
1

loglog

n

ffnn
H

ii∑−
=  = 0.5403 

 and 
( )

2

2
2

2
1

/loglog

n

nffff
s

iiii∑ 







∑−

=  = 0.001376 

 For City B, the respective statistic is: 
 
   H1 = 0.6328 
 and s2

2 = 0.000969. 
 
 The standard deviation of difference between two indices is: 
 
   ( ) 2

2
2
121 ssHHSD +=−   

               = 0 001376 0 000969. .+  
               = 0.0484 
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 and the standardised distance is: 
 

    t = ( )21

21
HHSD

HH
−

−  = 1.91. 

 with  ( )
( ) ( )

2

22
2

1

22
1

22
2

2
1

n
s

n
s

ssdf

+

+
=  = 196, the expected t value is 1.972.  

 Since the observed t value is less than its expected value, we conclude that the two 
diversity indices are not statistically different. // 
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X. SOME COMMENTS AND REFLECTION 
 
10.1.  INTERPRETATION OF P VALUES. 
 
 The  following comments are extracted from D.G Altman's publications.  
 
 P value abounds in medical research papers, so it is essential to understand precisely 

what they mean, and also what they do not mean. The P value is the probability of 
having observed our data (or more extreme data) when the null hypothesis is 
true. For example, in a clinical study this statement refers to the observed difference 
between the treatment groups. We are therefore relating our data to the likely 
variation in a sample due to chance when the null hypothesis is true in the 
population. 

 
 We have seen that samples give results that differ from what is true in the population, 

and that the variability among samples decreases as the sample size increases. It was 
seen in previous discussion that these facts are taken into account when test statistics, 
and hence P values, are calculated. 

 
 The interpretation of a P value is problematic. If we carry out a clinical trial to 

compare two treatments and get a "large" value of P, say greater than 0.2, then we 
can say that data such as ours could occur often when the null hypothesis is true - 
that is, the two treatments are equally effective. Conversely, if P value is very small, 
say less than 0.001, then the null hypothesis appears implausible because our data 
could hardly ever arise purely by chance when the null hypothesis is true. We can 
therefore feel confident that the null hypothesis is  not true and one treatment is 
better than the other. Between these two extremes lies a grey area, but conventionally 
a cut-off is chosen and if P is smaller than the cut-off value, the null hypothesis is 
rejected. The test of the null hypothesis is therefore whether or not P lies below the 
chosen cut-off point. 

 
 Although the choice of the cut-off is arbitrary, in practice in most cases we use 0.05. 

In other words, an outcome that could occur less than one time in 20 when the null 
hypothesis is true would lead to the rejection of the null hypothesis. In this 
formulation, when we reject the null hypothesis we accept a complementary 
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alternative hypothesis, which in the clinical trial example, is that the two treatments 
are not equally effective. If the P value exceeds the critical point we do not reject the 
null hypothesis. However, we can not say that we believe the null hypothesis is true, 
but only that there is not enough evidence to reject it. This is a subtle but important 
distinction. 

 
 A common misinterpretation of the P value is that it is the probability of the data 

having arisen by chance, or equivalently, that P value is the probability that the 
observed effect is not a real one. The distinction between this incorrect definition and 
the true definition given earlier is the absence of the phrase when the null 
hypothesis is true. The omission leads to the incorrect belief that it is impossible to 
evaluate the probability of the observed effect being a real one. The observed effect 
in the sample is genuine, but we do not know what is true in the population. All we 
can do is with this approach to statistical analysis is to calculate the probability of 
observing our data (or more unlikely data) when the null hypothesis is true. 

 
 
10.2. TYPE I AND TYPE II ERRORS AGAIN 
 
 The use of  cut-off for P leads to treating the analysis as a process for making a 

decision. Within this framework, it is customary (but unwise) to consider that a 
statistically significant effect is a real one, and conversely that a non-significant 
result indicates that there is no effect. Forcing a choice between significant and non-
significant obscures the uncertainty present whenever we draw inferences from a 
sample. When we construct a confidence interval the uncertainty is shown explicitly, 
but with a hypothesis test, it is implicit, and may easily be overlooked. 

 
 Two possible errors can be made when using P value to make a decision. Firstly, we 

can obtain a significant result, and thus reject the null hypothesis, when the null 
hypothesis is in fact true. This is called a type I error, and may be thought of as "false 
positive" result. Alternatively, we may obtain a non-significant result when the null 
hypothesis is not true, in which case, we make a type II error, which can be thought 
of as a "false negative" result. The probability of type I and type II errors are 
sometimes called the alpha (α) and beta (β), respectively.  
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 The value of alpha is determined in advance, usually at 5%. The value of beta 
depends upon the size effect that one is interested in, and also the sample size. More 
often we talk about the power of a study to detect an effect of a specified size, where 
the power is 1-beta. A wide confidence interval is an indication of low power. We 
will return to this aspect of sample size in a later topic in this course. 

 
 
10.3. ONE SIDED OR TWO-SIDED P VALUE: REVISITED? 
 
 Extreme results can occur by chance equally often in either direction, which we 

allow for by calculating a two-sided P value. In the vast majority of cases this is the 
correct procedure. In rare cases, it is reasonable to consider that a real difference in 
the opposite direction must be due to chance. Here the alternative hypothesis is 
restricted to an effect in one direction only, and it is reasonable to calculated one-
sided P value by considering only one tail of the distribution of the test statistic. For 
a test statistic with the Normal distribution the usual two-sided 5% cut-off point is 
1.96, whereas a one-sided 5% cut-off is 1.645. The difference is not particularly 
large but can lead to a different interpretation in relation to fixed levels of statistical 
significance.  

 
 One-sided tests are rarely appropriate. Even when we have strong prior expectations, 

for example that a new treatment can not be worse than an old one, we can not be 
sure that we are right. If we could be sure we would not need to do an experiment! If 
it is felt that a one-sided test really is appropriate, then this decision must be made 
before the data are analysed, it must not depend on what the results were.  
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XI. APPENDIX 
 
 Value of K for finding approximate 95% CI for differences in population 

medians of two unpaired samples with sample sizes n and m from 5 to 20. 
  

 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
  

5 3 4 6 7 8 9 10 12 13 14 15 16 18 19 20 21 
6 4 6 7 9 11 12 14 15 17 18 20 22 23 25 26 28 
7 6 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 
8 7 9 11 14 16 18 20 23 25 27 30 32 35 37 39 42 
9 8 11 13 16 18 21 24 27 29 32 35 38 40 43 46 49 
10 9 12 15 18 21 24 27 30 34 37 40 43 46 49 53 56 
11 10 14 17 20 24 27 31 34 38 41 45 48 52 56 59 63 
12 12 15 19 23 27 30 34 38 42 46 50 54 58 62 66 70 
13 13 17 21 25 29 34 38 42 46 51 55 60 64 68 73 77 
14 14 18 23 27 32 37 41 46 51 56 60 65 70 75 79 84 
15 15 20 25 30 35 40 45 50 55 60 65 71 76 81 86 91 
16 16 22 27 32 38 43 48 54 60 65 71 76 82 87 93 99 
17 18 23 29 35 40 46 52 58 64 70 76 82 88 94 100 106 
18 19 25 31 37 43 49 56 62 68 75 81 87 94 100 107 113 
19 20 26 33 39 46 53 59 66 73 79 86 93 100 107 114 120 
20 21 28 35 42 49 56 63 70 77 84 91 99 106 113 120 128 
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XII. EXERCISES 
 
1. In a study of the annual change in whole body bone mass in Black and White 

American children, Nelson et al. (JBMR 1994) reported the following baseline 
results: 

 
   Black White 
   (n=226) (n=137) 
     

  Age 8.9 (0.64)  9.0 (0.58) 
  BMC 966.2 (265)  875.5 (228) 
     

 Is the difference in BMC significant? Construct a 95% confidence interval for the 
difference.  

 
2. Since osteocalcin (OC) is non-normally distributed, therefore a ln(OC+1) 

transformation is necessary. The following data represent the level of ln(OC+!) in 
two groups of subjects classified according to their VDR genotype.  

 
   BB bb 
     

  n 30 38 
  ln(OC+1) 2.18 (0.70) 1.80 (0.69) 
     

 Perform a t-test on the data and construct a 95% difference between BB and bb 
subjects in  osteocalcin (not ln(OC+!)) levels. 

 
2. Consider the data in Example 2 (page 9) where the differences in logarithm of 

lysozyme between group A and group B was 0.51 and its 95% CI was -0.22 to 1.24. 
Convert this difference into the original unit of measurement. 

 
3. Perform a t-test on the arcsin transformation of the data in Example 3 (page 12). 
 
4. Perform a t-test on the square root transformation of the data in Example 4 (page 14). 
 



58 

5. Perform a t-test on the reciprocal transformation of the data in Example 5 (page 16). 
 
7. The table below shows the concentrations of antibody to type III group B 

streptococcus (GBS) in 20 volunteers before and after immunisation. 
 
  ID Antibody concentration 
   Before Immun. After immun. 
     
  1 0.4 0.4 
  2 0.4 0.5 
  3 0.4 0.5 
  4 0.4 0.9 
  5 0.5 0.5 
  6 0.5 0.5 
  7 0.5 0.5 
  8 0.5 0.5 
  9 0.5 0.5 
  10 0.6 0.6 
  11 0.6 12.2 
  12 0.7 1.1 
  13 0.7 1.2 
  14 0.8 0.8 
  15 0.9 1.2 
  16 0.9 1.9 
  17 1.0 0.9 
  18 1.0 2.0 
  19 1.6 8.1 
  20 2.0 3.7 
 
 (a) The comparison of the antibody levels was summarised in the report of this study 

as "t = 1.8; p>0.05". Comment on this result. 
 (b) What method would be more appropriate to analyse these data? Analyse the data 

with the appropriate method and comment on the result. 
 
8. The effect of benzedrine on the heart rate of dogs in beats/min was examined in an 

experiment on 14 dogs chosen for the study. Each dog was to serve as its own 
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control, with half of the dogs assigned to receive Benzedrine during the first study 
period and the other half assigned to receive a placebo. All dogs were examined to 
determine the heart rates after 2 hours on the medication. After two weeks in which 
medication was given, the regimens for the dogs were switch for the second study 
period. The dogs previously on Benzedrine were given the placebo while the others 
received Benzedrine. Again heart rates were measured after 2 hours. 

 
 The results are as follows: 
 
 Dog    Placebo  Benzedrine 
 1 259 258 
 2 271 285 
 3 243 245 
 4 252 250 
 5 266 268 
 6 272 278 
 7 293 280 
 8 296 305 
 9 301 319 
 10 298 308 
 11 310 320 
 12 286 293 
 13 306 305 
 14 309 313 
 
9. Patients with chronic renal failure undergoing haemodialysis were divided into 

groups with low or normal plasma heparin cofactor II (HC II) levels. Five months 
later the acute effects of haemodialysis were divided by analysing plasma samples 
taken before and after haemodialysis. As dialysis increases total protein 
concentration in plasma, the ratio HC II to protein was calculated, with the results 
shown in the following table: 

 
   Group 1 (low) Group 2 (normal) 
   before after before after 
     
 1.41 1.47 2.11 2.15 
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 1.37 1.45 1.85 2.11 
 1.33 1.50 1.82 1.93 
 1.13 1.25 1.75 1.83 
 1.09 1.01 1.54 1.90 
 1.03 1.14 1.52 1.56 
 0.89 0.98 1.49 1.44 
 0.86 0.89 1.44 1.43 
 0.75 0.95 1.38 1.28 
 0.75 0.83 1.30 1.30 
 0.70 0.75 1.20 1.21 
 0.69 0.71 1.19 1.30 
     
 
 The authors of this study analysed by separate paired Wilcoxon tests on the data for 

each group, giving P<0.01 for group 1 and P > 0.05 for group 2, then concluded "HC 
II activity increases in group 1 but not in group 2". This statement was wrong, why ? 
Carry out a better analysis of the data.  

 
10. Sixty-five pregnant women at a high risk of pregnancy-induced hypertension 

participated in a randomised controlled trial comparing 100 mg of aspirin daily and 
matching placebo during the third trimester of pregnancy. The observed rates of 
hypertension are shown in the following table: 

    
   Apirin Placebo Total 
     
  Hypertension 4 11 15 
  No hypertension 30 20 50 
  Total 34 31 65 
     
 
 Do these data suggest that daily aspirin reduces the risk of hypertension in the last 

trimester of pregnancy? 
 
11. There may be a remedy for baldness - at least that is what million of men hope, if the 

FDA approves Upjohn's minoxidil for such a use. Minoxidil  was investigated in a 
large, 27-centre study where patients were randomly assigned to receive topical 
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minoxidil or an identical placebo. Ignoring the centre-to-centre variation, the 
preliminary results are as follows: 

 
  Sample  % with new hair growth 
       
  Minoxidil  310 32 
  Placebo 309 20 
       

 
 Are the difference statistically significant ? 
 
12. A study was carried out to see if patients whose skin did not respond to 

dinitrochlorobenzene (DNCB), a contact allergen, would show an equally negative 
response to croton oil, a skin irritant. The following table shows the results of 
simultaneous skin reaction tests to DNCB and croton oil in 173 patients with skin 
cancer: 

 
 
   DNCB 
   +ve -ve Total 
     
 Croton oil 
  +ve 81 48 129 
  -ve 23 21 44 
  total 104 69 173 
     
 
 (a) The authors reported "no correlation" between the two tests. Carry out an analysis 

appropriate to the clinical question posed. 
 (b) The results of DNCB test were compared for patients with different stages of 

cancer, as shown in the following table: 
 
   Stage of skin cancer 
   I II III Total 
     
 DNCB reaction 
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  +ve 39 39 26 104 
  -ve 13 19 37 69 
  total 52 58 63 173 
     
 
 Is DNCB reactivity to stage of cancer in these patients ? 
 
13. A study was made of 65 patients who had received or were receiving sodium 

aurothiomalate as a treatment for rheumatoid arthritis. The aim was to examine the 
possibility that toxicity to sodium aurothiomalate (SA) might be linked to 
sulphoxidation capacity, as assessed by the sulphoxidation index (SI). Value of SI>6 
were taken as indicating impaired SA. The data were given as follows: 

 
   Major adverse reaction (toxicity) 
   Yes No Total 
     
 Impaired sulphoxidation  
  Yes 30 9 39 
  No 7 19 26 
  Total 37 28 65 
     
 
 The authors wrote: "The incidence of impaired sulphoxidation in patients showing 

SA toxicity (30/37); 81.0%) was significantly greater than in the group without 
adverse reaction (9/28; 32%) (Chi square test = 27.6; p<0.001). Similarly, the 
incidence of toxicity was significantly increased in those with impaired 
sulphoxidation (30/39; 76.9%) compared to those with extensive sulphoxidation 
(7/26; 26.9%) (Chi square test = 36.2; p<0.001)". 

 
 (a) Why can't both of the above Chi squared tests be correct ? 
 (b) Carry out a Chi squared test of the data in the table and compare your answer 

with the two results in the above paragraphs. 
 
14. A case-control study was carried out to investigate the aetiology of acoustic 

neuromas. Men aged 25-29 at the time of diagnosis who were residents in Los 
Angeles County were eligible for inclusion. A total of 118 men were identified who 
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were alive and able to be interviewed. Twenty eight patients were not interviewed 
because the physician refused permission (12), the patient chose not to participate 
(9), or the patients could not be located (7). For 86 of the remaining patients the 
investigators identified and interviewed a neighbourhood control of the same race 
and within five years of age. 

 
 Both members of each case-control pair were interviewed in the same manner by the 

same interviewer to obtain information about various life experiences. Exposure to 
loud noise at work was of particular interest. Overall, 58 cases and 46 controls had 
had some exposure to loud noise at work. There were 20 case-control pairs for which 
the case but not the control had had such exposure, and 8 pairs where the control but 
not the case had had some exposure. 

 
 (a) Carry out an appropriate analysis to compare the proportion exposed cases and 

controls; 
 (b) Calculate the odds ratio for acoustic neuroma associated with exposure to loud 

noise at work. 
 
15. In a clinical trial in which a total 100 patients are allocated to two treatment groups 

by simple randomisation. Show that the probability that the difference between the 
numbers of patients in the two treatment groups exceeds 20 is about 5%.  

 
16. If two studies' results yield P<0.001 and P=0.02  
 (a) Is it true that the former has found a stronger effect than the latte ? 
 (b) If the two studies are identical with the above P values, what are the possible 

explanation for the large difference.  
 
17. A controlled trial was performed to compare the corticosteroid prednisole and 

placebo in patients with chronic active hepatitis positive for hepatitis B surface 
antigen. In response to a letter criticising the analysis the author wrote: "The one-
sided test was used in the calculations, since in a previous analysis major 
complications were encountered significantly more frequently in the steroid-treated 
group" Is this a valid justification for one-sided test? If not, why not? 

 


